414 research outputs found

    Line-of-Sight Obstruction Analysis for Vehicle-to-Vehicle Network Simulations in a Two-Lane Highway Scenario

    Get PDF
    In vehicular ad-hoc networks (VANETs) the impact of vehicles as obstacles has largely been neglected in the past. Recent studies have reported that the vehicles that obstruct the line-of-sight (LOS) path may introduce 10-20 dB additional loss, and as a result reduce the communication range. Most of the traffic mobility models (TMMs) today do not treat other vehicles as obstacles and thus can not model the impact of LOS obstruction in VANET simulations. In this paper the LOS obstruction caused by other vehicles is studied in a highway scenario. First a car-following model is used to characterize the motion of the vehicles driving in the same direction on a two-lane highway. Vehicles are allowed to change lanes when necessary. The position of each vehicle is updated by using the car-following rules together with the lane-changing rules for the forward motion. Based on the simulated traffic a simple TMM is proposed for VANET simulations, which is capable to identify the vehicles that are in the shadow region of other vehicles. The presented traffic mobility model together with the shadow fading path loss model can take in to account the impact of LOS obstruction on the total received power in the multiple-lane highway scenarios.Comment: 8 pages, 11 figures, Accepted for publication in the International Journal of Antennas and Propagation, Special Issue on Radio Wave Propagation and Wireless Channel Modeling 201

    Massive MIMO performance evaluation based on measured propagation data

    Full text link
    Massive MIMO, also known as very-large MIMO or large-scale antenna systems, is a new technique that potentially can offer large network capacities in multi-user scenarios. With a massive MIMO system, we consider the case where a base station equipped with a large number of antenna elements simultaneously serves multiple single-antenna users in the same time-frequency resource. So far, investigations are mostly based on theoretical channels with independent and identically distributed (i.i.d.) complex Gaussian coefficients, i.e., i.i.d. Rayleigh channels. Here, we investigate how massive MIMO performs in channels measured in real propagation environments. Channel measurements were performed at 2.6 GHz using a virtual uniform linear array (ULA) which has a physically large aperture, and a practical uniform cylindrical array (UCA) which is more compact in size, both having 128 antenna ports. Based on measurement data, we illustrate channel behavior of massive MIMO in three representative propagation conditions, and evaluate the corresponding performance. The investigation shows that the measured channels, for both array types, allow us to achieve performance close to that in i.i.d. Rayleigh channels. It is concluded that in real propagation environments we have characteristics that can allow for efficient use of massive MIMO, i.e., the theoretical advantages of this new technology can also be harvested in real channels.Comment: IEEE Transactions on Wireless Communications, 201

    Channel Related Optimization of Wireless Communication Systems

    Get PDF
    This thesis deals with different optimization problems in the design of wireless communication systems. It is mainly directed to the design of systems based on multicarrier techniques and orthogonal frequency division multiplex, OFDM, but some of the problems apply to single carrier systems as well. The influence of different pilot patterns is analyzed when pilot symbol assisted modulation, PSAM, is used in OFDM systems. It is desirable to decrease the number of required pilot symbols and it is shown that the pilot pattern used plays a major role to enable reliable channel estimates from a small amount of pilot symbols. Rearrangement of the pilot pattern enables a reduction in the number of needed pilot symbols up to a factor 10, still retaining the same bit error performance. The effect of the number of sub-channels used in an OFDM system is analyzed with respect to resulting bit error rate. An analytical expression for the bit error rate on Rayleigh fading channels when interchannel interference, ICI, caused by channel changes during a symbol and energy loss due to the cyclic prefix are regarded. This expression is used to optimize the number of sub-channels, and thereby the sub-channel bandwidth (sub-channel spacing) in the system. It is argued that the system can be optimized neglecting the effect of imperfect channel estimation and on a worst case assumption for the Doppler frequency and signal to noise ratio. The benefits of using pre-compensation (precoding) in wireless time division duplex, TDD, systems are also investigated. The uplink channel estimate is used to compensate the channel impact on the downlink symbols. This enables less complex receiver structures in the mobile terminal since channel equalization is performed in the base station. Three different methods where amplitude and/or phase are adjusted are analyzed in terms of performance limits. Closed-form expressions for the QPSK bit error rate are given assuming a fully known channel. It is shown that pre-compensation is an attractive alternative to differential decoding. Phase-only compensation is preferred at low signal to noise ratios, while at high signal to noise ratios an order of magnitude improvement in the bit error rate can be obtained by including amplitude pre-compensation. All the analyses and optimizations are general and can be applied to any OFDM system

    Massive MIMO Performance - TDD Versus FDD: What Do Measurements Say?

    Full text link
    Downlink beamforming in Massive MIMO either relies on uplink pilot measurements - exploiting reciprocity and TDD operation, or on the use of a predetermined grid of beams with user equipments reporting their preferred beams, mostly in FDD operation. Massive MIMO in its originally conceived form uses the first strategy, with uplink pilots, whereas there is currently significant commercial interest in the second, grid-of-beams. It has been analytically shown that in isotropic scattering (independent Rayleigh fading) the first approach outperforms the second. Nevertheless there remains controversy regarding their relative performance in practice. In this contribution, the performances of these two strategies are compared using measured channel data at 2.6 GHz.Comment: Submitted to IEEE Transactions on Wireless Communications, 31/Mar/201

    Massive MIMO Extensions to the COST 2100 Channel Model: Modeling and Validation

    Full text link
    To enable realistic studies of massive multiple-input multiple-output systems, the COST 2100 channel model is extended based on measurements. First, the concept of a base station-side visibility region (BS-VR) is proposed to model the appearance and disappearance of clusters when using a physically-large array. We find that BS-VR lifetimes are exponentially distributed, and that the number of BS-VRs is Poisson distributed with intensity proportional to the sum of the array length and the mean lifetime. Simulations suggest that under certain conditions longer lifetimes can help decorrelating closely-located users. Second, the concept of a multipath component visibility region (MPC-VR) is proposed to model birth-death processes of individual MPCs at the mobile station side. We find that both MPC lifetimes and MPC-VR radii are lognormally distributed. Simulations suggest that unless MPC-VRs are applied the channel condition number is overestimated. Key statistical properties of the proposed extensions, e.g., autocorrelation functions, maximum likelihood estimators, and Cramer-Rao bounds, are derived and analyzed.Comment: Submitted to IEEE Transactions of Wireless Communication

    Reciprocity Calibration for Massive MIMO: Proposal, Modeling and Validation

    Get PDF
    This paper presents a mutual coupling based calibration method for time-division-duplex massive MIMO systems, which enables downlink precoding based on uplink channel estimates. The entire calibration procedure is carried out solely at the base station (BS) side by sounding all BS antenna pairs. An Expectation-Maximization (EM) algorithm is derived, which processes the measured channels in order to estimate calibration coefficients. The EM algorithm outperforms current state-of-the-art narrow-band calibration schemes in a mean squared error (MSE) and sum-rate capacity sense. Like its predecessors, the EM algorithm is general in the sense that it is not only suitable to calibrate a co-located massive MIMO BS, but also very suitable for calibrating multiple BSs in distributed MIMO systems. The proposed method is validated with experimental evidence obtained from a massive MIMO testbed. In addition, we address the estimated narrow-band calibration coefficients as a stochastic process across frequency, and study the subspace of this process based on measurement data. With the insights of this study, we propose an estimator which exploits the structure of the process in order to reduce the calibration error across frequency. A model for the calibration error is also proposed based on the asymptotic properties of the estimator, and is validated with measurement results.Comment: Submitted to IEEE Transactions on Wireless Communications, 21/Feb/201

    The COST IRACON Geometry-based Stochastic Channel Model for Vehicle-to-Vehicle Communication in Intersections

    Full text link
    Vehicle-to-vehicle (V2V) wireless communications can improve traffic safety at road intersections and enable congestion avoidance. However, detailed knowledge about the wireless propagation channel is needed for the development and realistic assessment of V2V communication systems. We present a novel geometry-based stochastic MIMO channel model with support for frequencies in the band of 5.2-6.2 GHz. The model is based on extensive high-resolution measurements at different road intersections in the city of Berlin, Germany. We extend existing models, by including the effects of various obstructions, higher order interactions, and by introducing an angular gain function for the scatterers. Scatterer locations have been identified and mapped to measured multi-path trajectories using a measurement-based ray tracing method and a subsequent RANSAC algorithm. The developed model is parameterized, and using the measured propagation paths that have been mapped to scatterer locations, model parameters are estimated. The time variant power fading of individual multi-path components is found to be best modeled by a Gamma process with an exponential autocorrelation. The path coherence distance is estimated to be in the range of 0-2 m. The model is also validated against measurement data, showing that the developed model accurately captures the behavior of the measured channel gain, Doppler spread, and delay spread. This is also the case for intersections that have not been used when estimating model parameters.Comment: Submitted to IEEE Transactions on Vehicular Technolog

    A Measurement Based Shadow Fading Model for Vehicle-to-Vehicle Network Simulations

    Full text link
    The vehicle-to-vehicle (V2V) propagation channel has significant implications on the design and performance of novel communication protocols for vehicular ad hoc networks (VANETs). Extensive research efforts have been made to develop V2V channel models to be implemented in advanced VANET system simulators for performance evaluation. The impact of shadowing caused by other vehicles has, however, largely been neglected in most of the models, as well as in the system simulations. In this paper we present a shadow fading model targeting system simulations based on real measurements performed in urban and highway scenarios. The measurement data is separated into three categories, line-of-sight (LOS), obstructed line-of-sight (OLOS) by vehicles, and non line-of-sight due to buildings, with the help of video information recorded during the measurements. It is observed that vehicles obstructing the LOS induce an additional average attenuation of about 10 dB in the received signal power. An approach to incorporate the LOS/OLOS model into existing VANET simulators is also provided. Finally, system level VANET simulation results are presented, showing the difference between the LOS/OLOS model and a channel model based on Nakagami-m fading.Comment: 10 pages, 12 figures, submitted to Hindawi International Journal of Antennas and Propagatio

    Statistical Modeling and Estimation of Censored Pathloss Data

    Get PDF
    Pathloss is typically modeled using a log-distance power law with a large-scale fading term that is log-normal. However, the received signal is affected by the dynamic range and noise floor of the measurement system used to sound the channel, which can cause measurement samples to be truncated or censored. If the information about the censored samples are not included in the estimation method, as in ordinary least squares estimation, it can result in biased estimation of both the pathloss exponent and the large scale fading. This can be solved by applying a Tobit maximum-likelihood estimator, which provides consistent estimates for the pathloss parameters. This letter provides information about the Tobit maximum-likelihood estimator and its asymptotic variance under certain conditions.Comment: 4 pages, 3 figures. Published in IEEE Wireless Communication Letter

    Impact of Spatially Consistent Channels on Digital Beamforming for Millimeter-Wave Systems: (Invited Paper)

    Get PDF
    The premise of massive multiple-input multiple-output (MIMO) is based around coherent transmission and detection. Majority of the vast literature on massive MIMO presents performance evaluations over simplified statistical propagation models. All such models are drop-based and do not ensure continuity of channel parameters. In this paper, we quantify the impact of spatially consistent (SC) models on beamforming for massive MIMO systems. We focus on the downlink of a 28GHz multiuser urban microcellular scenario. Using the recently standardized Third Generation Partnership Project 38.901 SC-I procedure, we evaluate the signal-to-interference-plus-noise ratio of a user equipment and the system ergodic sum spectral efficiency with zero-forcing, block diagonalization, and signal-to-leakage-plus-noise ratio beamforming. Our results disclose that at practical signal-to-noise ratio levels, SC channels yield a significant performance loss relative to the case without SC due to substantial spatial correlation across the channel parameters
    • …
    corecore